Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication

Concise Communication

  • 91 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 8
  • 9
  • 10
  • Next →
Tumor immune profiling predicts response to anti–PD-1 therapy in human melanoma
Adil I. Daud, … , Matthew F. Krummel, Michael D. Rosenblum
Adil I. Daud, … , Matthew F. Krummel, Michael D. Rosenblum
Published September 1, 2016; First published August 15, 2016
Citation Information: J Clin Invest. 2016;126(9):3447-3452. https://doi.org/10.1172/JCI87324.
View: Text | PDF

Tumor immune profiling predicts response to anti–PD-1 therapy in human melanoma

  • Text
  • PDF
Abstract

BACKGROUND. Immune checkpoint blockade is revolutionizing therapy for advanced cancer, but many patients do not respond to treatment. The identification of robust biomarkers that predict clinical response to specific checkpoint inhibitors is critical in order to stratify patients and to rationally select combinations in the context of an expanding array of therapeutic options.

METHODS. We performed multiparameter flow cytometry on freshly isolated metastatic melanoma samples from 2 cohorts of 20 patients each prior to treatment and correlated the subsequent clinical response with the tumor immune phenotype.

RESULTS. Increasing fractions of programmed cell death 1 high/cytotoxic T lymphocyte–associated protein 4 high (PD-1hiCTLA-4hi) cells within the tumor-infiltrating CD8+ T cell subset strongly correlated with response to therapy (RR) and progression-free survival (PFS). Functional analysis of these cells revealed a partially exhausted T cell phenotype. Assessment of metastatic lesions during anti–PD-1 therapy demonstrated a release of T cell exhaustion, as measured by an accumulation of highly activated CD8+ T cells within tumors, with no effect on Tregs.

CONCLUSIONS. Our data suggest that the relative abundance of partially exhausted tumor-infiltrating CD8+ T cells predicts response to anti–PD-1 therapy. This information can be used to appropriately select patients with a high likelihood of achieving a clinical response to PD-1 pathway inhibition.

FUNDING. This work was funded by a generous gift provided by Inga-Lill and David Amoroso as well as a generous gift provided by Stephen Juelsgaard and Lori Cook.

Authors

Adil I. Daud, Kimberly Loo, Mariela L. Pauli, Robert Sanchez-Rodriguez, Priscila Munoz Sandoval, Keyon Taravati, Katy Tsai, Adi Nosrati, Lorenzo Nardo, Michael D. Alvarado, Alain P. Algazi, Miguel H. Pampaloni, Iryna V. Lobach, Jimmy Hwang, Robert H. Pierce, Iris K. Gratz, Matthew F. Krummel, Michael D. Rosenblum

×

Recurrent EZH1 mutations are a second hit in autonomous thyroid adenomas
Davide Calebiro, … , Luca Persani, Ralf Paschke
Davide Calebiro, … , Luca Persani, Ralf Paschke
Published September 1, 2016; First published August 8, 2016
Citation Information: J Clin Invest. 2016;126(9):3383-3388. https://doi.org/10.1172/JCI84894.
View: Text | PDF

Recurrent EZH1 mutations are a second hit in autonomous thyroid adenomas

  • Text
  • PDF
Abstract

Autonomous thyroid adenomas (ATAs) are a frequent cause of hyperthyroidism. Mutations in the genes encoding the TSH receptor (TSHR) or the Gs protein α subunit (GNAS) are found in approximately 70% of ATAs. The involvement of other genes and the pathogenesis of the remaining cases are presently unknown. Here, we performed whole-exome sequencing in 19 ATAs that were paired with normal DNA samples and identified a recurrent hot-spot mutation (c.1712A>G; p.Gln571Arg) in the enhancer of zeste homolog 1 (EZH1) gene, which codes for a catalytic subunit of the polycomb complex. Targeted screening in an independent cohort confirmed that this mutation occurs with high frequency (27%) in ATAs. EZH1 mutations were strongly associated with known (TSHR, GNAS) or presumed (adenylate cyclase 9 [ADCY9]) alterations in cAMP pathway genes. Furthermore, functional studies revealed that the p.Gln571Arg EZH1 mutation caused increased histone H3 trimethylation and increased proliferation of thyroid cells. In summary, this study revealed that a hot-spot mutation in EZH1 is the second most frequent genetic alteration in ATAs. The association between EZH1 and TSHR mutations suggests a 2-hit model for the pathogenesis of these tumors, whereby constitutive activation of the cAMP pathway and EZH1 mutations cooperate to induce the hyperproliferation of thyroid cells.

Authors

Davide Calebiro, Elisa S. Grassi, Markus Eszlinger, Cristina L. Ronchi, Amod Godbole, Kerstin Bathon, Fabiana Guizzardi, Tiziana de Filippis, Knut Krohn, Holger Jaeschke, Thomas Schwarzmayr, Rifat Bircan, Hulya Iliksu Gozu, Seda Sancak, Marek Niedziela, Tim M. Strom, Martin Fassnacht, Luca Persani, Ralf Paschke

×

Destabilized SMC5/6 complex leads to chromosome breakage syndrome with severe lung disease
Saskia N. van der Crabben, … , Johanne M. Murray, Gijs van Haaften
Saskia N. van der Crabben, … , Johanne M. Murray, Gijs van Haaften
Published August 1, 2016; First published July 18, 2016
Citation Information: J Clin Invest. 2016;126(8):2881-2892. https://doi.org/10.1172/JCI82890.
View: Text | PDF

Destabilized SMC5/6 complex leads to chromosome breakage syndrome with severe lung disease

  • Text
  • PDF
Abstract

The structural maintenance of chromosomes (SMC) family of proteins supports mitotic proliferation, meiosis, and DNA repair to control genomic stability. Impairments in chromosome maintenance are linked to rare chromosome breakage disorders. Here, we have identified a chromosome breakage syndrome associated with severe lung disease in early childhood. Four children from two unrelated kindreds died of severe pulmonary disease during infancy following viral pneumonia with evidence of combined T and B cell immunodeficiency. Whole exome sequencing revealed biallelic missense mutations in the NSMCE3 (also known as NDNL2) gene, which encodes a subunit of the SMC5/6 complex that is essential for DNA damage response and chromosome segregation. The NSMCE3 mutations disrupted interactions within the SMC5/6 complex, leading to destabilization of the complex. Patient cells showed chromosome rearrangements, micronuclei, sensitivity to replication stress and DNA damage, and defective homologous recombination. This work associates missense mutations in NSMCE3 with an autosomal recessive chromosome breakage syndrome that leads to defective T and B cell function and acute respiratory distress syndrome in early childhood.

Authors

Saskia N. van der Crabben, Marije P. Hennus, Grant A. McGregor, Deborah I. Ritter, Sandesh C.S. Nagamani, Owen S. Wells, Magdalena Harakalova, Ivan K. Chinn, Aaron Alt, Lucie Vondrova, Ron Hochstenbach, Joris M. van Montfrans, Suzanne W. Terheggen-Lagro, Stef van Lieshout, Markus J. van Roosmalen, Ivo Renkens, Karen Duran, Isaac J. Nijman, Wigard P. Kloosterman, Eric Hennekam, Jordan S. Orange, Peter M. van Hasselt, David A. Wheeler, Jan J. Palecek, Alan R. Lehmann, Antony W. Oliver, Laurence H. Pearl, Sharon E. Plon, Johanne M. Murray, Gijs van Haaften

×

The nonsense-mediated RNA decay pathway is disrupted in inflammatory myofibroblastic tumors
JingWei Lu, … , Miles F. Wilkinson, YanJun Lu
JingWei Lu, … , Miles F. Wilkinson, YanJun Lu
Published August 1, 2016; First published June 27, 2016
Citation Information: J Clin Invest. 2016;126(8):3058-3062. https://doi.org/10.1172/JCI86508.
View: Text | PDF

The nonsense-mediated RNA decay pathway is disrupted in inflammatory myofibroblastic tumors

  • Text
  • PDF
Abstract

Inflammatory myofibroblastic tumors (IMTs) are characterized by myofibroblast proliferation and an inflammatory cell infiltrate. Little is known about the molecular pathways that precipitate IMT formation. Here, we report the identification of somatic mutations in UPF1, a gene that encodes an essential component of the nonsense-mediated RNA decay (NMD) pathway, in 13 of 15 pulmonary IMT samples. The majority of mutations occurred in a specific region of UPF1 and triggered UPF1 alternative splicing. Several mRNA targets of the NMD pathway were upregulated in IMT samples, indicating that the UPF1 mutations led to reduced NMD magnitude. These upregulated NMD targets included NIK mRNA, which encodes a potent activator of NF-κB. In human lung cells, UPF1 depletion increased expression of chemokine-encoding genes in a NIK-dependent manner. Elevated chemokines and IgE class switching events were observed in IMT samples, consistent with NIK upregulation in these tumors. Together, these results support a model in which UPF1 mutations downregulate NMD, leading to NIK-dependent NF-κB induction, which contributes to the immune infiltration that is characteristic of IMTs. The molecular link between the NMD pathway and IMTs has implications for the diagnosis and treatment of these tumors.

Authors

JingWei Lu, Terra-Dawn Plank, Fang Su, XiuJuan Shi, Chen Liu, Yuan Ji, ShuaiJun Li, Andrew Huynh, Chao Shi, Bo Zhu, Guang Yang, YanMing Wu, Miles F. Wilkinson, YanJun Lu

×

The composition of the microbiota modulates allograft rejection
Yuk Man Lei, … , Caroline Bartman, Maria-Luisa Alegre
Yuk Man Lei, … , Caroline Bartman, Maria-Luisa Alegre
Published July 1, 2016; First published June 20, 2016
Citation Information: J Clin Invest. 2016;126(7):2736-2744. https://doi.org/10.1172/JCI85295.
View: Text | PDF

The composition of the microbiota modulates allograft rejection

  • Text
  • PDF
Abstract

Transplantation is the only cure for end-stage organ failure, but without immunosuppression, T cells rapidly reject allografts. While genetic disparities between donor and recipient are major determinants of the kinetics of transplant rejection, little is known about the contribution of environmental factors. Because colonized organs have worse transplant outcome than sterile organs, we tested the influence of host and donor microbiota on skin transplant rejection. Compared with untreated conventional mice, pretreatment of donors and recipients with broad-spectrum antibiotics (Abx) or use of germ-free (GF) donors and recipients resulted in prolonged survival of minor antigen–mismatched skin grafts. Increased graft survival correlated with reduced type I IFN signaling in antigen-presenting cells (APCs) and decreased priming of alloreactive T cells. Colonization of GF mice with fecal material from untreated conventional mice, but not from Abx-pretreated mice, enhanced the ability of APCs to prime alloreactive T cells and accelerated graft rejection, suggesting that alloimmunity is modulated by the composition of microbiota rather than the quantity of bacteria. Abx pretreatment of conventional mice also delayed rejection of major antigen–mismatched skin and MHC class II–mismatched cardiac allografts. This study demonstrates that Abx pretreatment prolongs graft survival, suggesting that targeting microbial constituents is a potential therapeutic strategy for enhancing graft acceptance.

Authors

Yuk Man Lei, Luqiu Chen, Ying Wang, Andrew T. Stefka, Luciana L. Molinero, Betty Theriault, Keston Aquino-Michaels, Ayelet S. Sivan, Cathryn R. Nagler, Thomas F. Gajewski, Anita S. Chong, Caroline Bartman, Maria-Luisa Alegre

×

CD47-blocking immunotherapies stimulate macrophage-mediated destruction of small-cell lung cancer
Kipp Weiskopf, … , Irving L. Weissman, Julien Sage
Kipp Weiskopf, … , Irving L. Weissman, Julien Sage
Published July 1, 2016; First published June 13, 2016
Citation Information: J Clin Invest. 2016;126(7):2610-2620. https://doi.org/10.1172/JCI81603.
View: Text | PDF

CD47-blocking immunotherapies stimulate macrophage-mediated destruction of small-cell lung cancer

  • Text
  • PDF
Abstract

Small-cell lung cancer (SCLC) is a highly aggressive subtype of lung cancer with limited treatment options. CD47 is a cell-surface molecule that promotes immune evasion by engaging signal-regulatory protein alpha (SIRPα), which serves as an inhibitory receptor on macrophages. Here, we found that CD47 is highly expressed on the surface of human SCLC cells; therefore, we investigated CD47-blocking immunotherapies as a potential approach for SCLC treatment. Disruption of the interaction of CD47 with SIRPα using anti-CD47 antibodies induced macrophage-mediated phagocytosis of human SCLC patient cells in culture. In a murine model, administration of CD47-blocking antibodies or targeted inactivation of the Cd47 gene markedly inhibited SCLC tumor growth. Furthermore, using comprehensive antibody arrays, we identified several possible therapeutic targets on the surface of SCLC cells. Antibodies to these targets, including CD56/neural cell adhesion molecule (NCAM), promoted phagocytosis in human SCLC cell lines that was enhanced when combined with CD47-blocking therapies. In light of recent clinical trials for CD47-blocking therapies in cancer treatment, these findings identify disruption of the CD47/SIRPα axis as a potential immunotherapeutic strategy for SCLC. This approach could enable personalized immunotherapeutic regimens in patients with SCLC and other cancers.

Authors

Kipp Weiskopf, Nadine S. Jahchan, Peter J. Schnorr, Sandra Cristea, Aaron M. Ring, Roy L. Maute, Anne K. Volkmer, Jens-Peter Volkmer, Jie Liu, Jing Shan Lim, Dian Yang, Garrett Seitz, Thuyen Nguyen, Di Wu, Kevin Jude, Heather Guerston, Amira Barkal, Francesca Trapani, Julie George, John T. Poirier, Eric E. Gardner, Linde A. Miles, Elisa de Stanchina, Shane M. Lofgren, Hannes Vogel, Monte M. Winslow, Caroline Dive, Roman K. Thomas, Charles M. Rudin, Matt van de Rijn, Ravindra Majeti, K. Christopher Garcia, Irving L. Weissman, Julien Sage

×

Soluble fms-like tyrosine kinase 1 promotes angiotensin II sensitivity in preeclampsia
Suzanne D. Burke, … , Iris Z. Jaffe, S. Ananth Karumanchi
Suzanne D. Burke, … , Iris Z. Jaffe, S. Ananth Karumanchi
Published July 1, 2016; First published June 6, 2016
Citation Information: J Clin Invest. 2016;126(7):2561-2574. https://doi.org/10.1172/JCI83918.
View: Text | PDF

Soluble fms-like tyrosine kinase 1 promotes angiotensin II sensitivity in preeclampsia

  • Text
  • PDF
Abstract

Preeclampsia is a hypertensive disorder of pregnancy in which patients develop profound sensitivity to vasopressors, such as angiotensin II, and is associated with substantial morbidity for the mother and fetus. Enhanced vasoconstrictor sensitivity and elevations in soluble fms-like tyrosine kinase 1 (sFLT1), a circulating antiangiogenic protein, precede clinical signs and symptoms of preeclampsia. Here, we report that overexpression of sFlt1 in pregnant mice induced angiotensin II sensitivity and hypertension by impairing endothelial nitric oxide synthase (eNOS) phosphorylation and promoting oxidative stress in the vasculature. Administration of the NOS inhibitor l-NAME to pregnant mice recapitulated the angiotensin sensitivity and oxidative stress observed with sFlt1 overexpression. Sildenafil, an FDA-approved phosphodiesterase 5 inhibitor that enhances NO signaling, reversed sFlt1-induced hypertension and angiotensin II sensitivity in the preeclampsia mouse model. Sildenafil treatment also improved uterine blood flow, decreased uterine vascular resistance, and improved fetal weights in comparison with untreated sFlt1-expressing mice. Finally, sFLT1 protein expression inversely correlated with reductions in eNOS phosphorylation in placental tissue of human preeclampsia patients. These data support the concept that endothelial dysfunction due to high circulating sFLT1 may be the primary event leading to enhanced vasoconstrictor sensitivity that is characteristic of preeclampsia and suggest that targeting sFLT1-induced pathways may be an avenue for treating preeclampsia and improving fetal outcomes.

Authors

Suzanne D. Burke, Zsuzsanna K. Zsengellér, Eliyahu V. Khankin, Agnes S. Lo, Augustine Rajakumar, Jennifer J. DuPont, Amy McCurley, Mary E. Moss, Dongsheng Zhang, Christopher D. Clark, Alice Wang, Ellen W. Seely, Peter M. Kang, Isaac E. Stillman, Iris Z. Jaffe, S. Ananth Karumanchi

×

Two superoxide dismutase prion strains transmit amyotrophic lateral sclerosis–like disease
Elaheh Ekhtiari Bidhendi, … , Stefan L. Marklund, Thomas Brännström
Elaheh Ekhtiari Bidhendi, … , Stefan L. Marklund, Thomas Brännström
Published June 1, 2016; First published May 3, 2016
Citation Information: J Clin Invest. 2016;126(6):2249-2253. https://doi.org/10.1172/JCI84360.
View: Text | PDF

Two superoxide dismutase prion strains transmit amyotrophic lateral sclerosis–like disease

  • Text
  • PDF
Abstract

Amyotrophic lateral sclerosis (ALS) is an adult-onset degeneration of motor neurons that is commonly caused by mutations in the gene encoding superoxide dismutase 1 (SOD1). Both patients and Tg mice expressing mutant human SOD1 (hSOD1) develop aggregates of unknown importance. In Tg mice, 2 different strains of hSOD1 aggregates (denoted A and B) can arise; however, the role of these aggregates in disease pathogenesis has not been fully characterized. Here, minute amounts of strain A and B hSOD1 aggregate seeds that were prepared by centrifugation through a density cushion were inoculated into lumbar spinal cords of 100-day-old mice carrying a human SOD1 Tg. Mice seeded with A or B aggregates developed premature signs of ALS and became terminally ill after approximately 100 days, which is 200 days earlier than for mice that had not been inoculated or were given a control preparation. Concomitantly, exponentially growing strain A and B hSOD1 aggregations propagated rostrally throughout the spinal cord and brainstem. The phenotypes provoked by the A and B strains differed regarding progression rates, distribution, end-stage aggregate levels, and histopathology. Together, our data indicate that the aggregate strains are prions that transmit a templated, spreading aggregation of hSOD1, resulting in a fatal ALS-like disease.

Authors

Elaheh Ekhtiari Bidhendi, Johan Bergh, Per Zetterström, Peter M. Andersen, Stefan L. Marklund, Thomas Brännström

×

Evaluation of direct-to-consumer low-volume lab tests in healthy adults
Brian A. Kidd, … , Eric E. Schadt, Joel T. Dudley
Brian A. Kidd, … , Eric E. Schadt, Joel T. Dudley
Published May 2, 2016; First published March 28, 2016
Citation Information: J Clin Invest. 2016;126(5):1734-1744. https://doi.org/10.1172/JCI86318.
View: Text | PDF | Corrigendum

Evaluation of direct-to-consumer low-volume lab tests in healthy adults

  • Text
  • PDF
Abstract

BACKGROUND. Clinical laboratory tests are now being prescribed and made directly available to consumers through retail outlets in the USA. Concerns with these test have been raised regarding the uncertainty of testing methods used in these venues and a lack of open, scientific validation of the technical accuracy and clinical equivalency of results obtained through these services.

METHODS. We conducted a cohort study of 60 healthy adults to compare the uncertainty and accuracy in 22 common clinical lab tests between one company offering blood tests obtained from finger prick (Theranos) and 2 major clinical testing services that require standard venipuncture draws (Quest and LabCorp). Samples were collected in Phoenix, Arizona, at an ambulatory clinic and at retail outlets with point-of-care services.

RESULTS. Theranos flagged tests outside their normal range 1.6× more often than other testing services (P < 0.0001). Of the 22 lab measurements evaluated, 15 (68%) showed significant interservice variability (P < 0.002). We found nonequivalent lipid panel test results between Theranos and other clinical services. Variability in testing services, sample collection times, and subjects markedly influenced lab results.

CONCLUSION. While laboratory practice standards exist to control this variability, the disparities between testing services we observed could potentially alter clinical interpretation and health care utilization. Greater transparency and evaluation of testing technologies would increase their utility in personalized health management.

FUNDING. This work was supported by the Icahn Institute for Genomics and Multiscale Biology, a gift from the Harris Family Charitable Foundation (to J.T. Dudley), and grants from the NIH (R01 DK098242 and U54 CA189201, to J.T. Dudley, and R01 AG046170 and U01 AI111598, to E.E. Schadt).

Authors

Brian A. Kidd, Gabriel Hoffman, Noah Zimmerman, Li Li, Joseph W. Morgan, Patricia K. Glowe, Gregory J. Botwin, Samir Parekh, Nikolina Babic, Matthew W. Doust, Gregory B. Stock, Eric E. Schadt, Joel T. Dudley

×

Cross-species translation of the Morris maze for Alzheimer’s disease
Katherine L. Possin, … , Joel H. Kramer, Steven Finkbeiner
Katherine L. Possin, … , Joel H. Kramer, Steven Finkbeiner
Published February 1, 2016; First published January 19, 2016
Citation Information: J Clin Invest. 2016;126(2):779-783. https://doi.org/10.1172/JCI78464.
View: Text | PDF

Cross-species translation of the Morris maze for Alzheimer’s disease

  • Text
  • PDF
Abstract

Analogous behavioral assays are needed across animal models and human patients to improve translational research. Here, we examined the extent to which performance in the Morris water maze — the most frequently used behavioral assay of spatial learning and memory in rodents — translates to humans. We designed a virtual version of the assay for human subjects that includes the visible-target training, hidden-target learning, and probe trials that are typically administered in the mouse version. We compared transgenic mice that express human amyloid precursor protein (hAPP) and patients with mild cognitive impairment due to Alzheimer’s disease (MCI-AD) to evaluate the sensitivity of performance measures in detecting deficits. Patients performed normally during visible-target training, while hAPP mice showed procedural learning deficits. In hidden-target learning and probe trials, hAPP mice and MCI-AD patients showed similar deficits in learning and remembering the target location. In addition, we have provided recommendations for selecting performance measures and sample sizes to make these assays sensitive to learning and memory deficits in humans with MCI-AD and in mouse models. Together, our results demonstrate that with careful study design and analysis, the Morris maze is a sensitive assay for detecting AD-relevant impairments across species.

Authors

Katherine L. Possin, Pascal E. Sanchez, Clifford Anderson-Bergman, Roland Fernandez, Geoffrey A. Kerchner, Erica T. Johnson, Allyson Davis, Iris Lo, Nicholas T. Bott, Thomas Kiely, Michelle C. Fenesy, Bruce L. Miller, Joel H. Kramer, Steven Finkbeiner

×
  • ← Previous
  • 1
  • 2
  • …
  • 8
  • 9
  • 10
  • Next →

No posts were found with this tag.

Advertisement
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts